金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

【什么是变分方法-图】百科知识点

来源:学大教育     时间:2017-11-07 10:50:19


学习生活中有很多内容需要大家了解,为了开阔大家的知识面,下面学大教育网为大家带来【什么是变分方法-图】百科知识点,希望大家能了解好这些百科知识。

【什么是变分方法-图】百科知识点

变分的研究对象

变分学的研究对象 17世纪末提出来的最速降线问题、短程线问题和等周问题是历史上著名的三大变分问题。泛函的极值是变分学的研究对象,其奠基人是L.欧拉、J.-L.拉格朗日、雅各布第一·伯努利和约翰第一·伯努利。

为了说明变分问题的特点,可以最小旋转面问题为例。它可表述为:"通过两个固定点(x1,y1)和(x2,y2),可作一系列曲线y=y(x),其中每条曲线绕x轴旋转一周都可得到一个旋转面,其面积为S;试求出使面积S为最小值的那条曲线y=y(x)。"显然,面积S取决于曲线的形式y=y(x),即由此可见,面积S是一个因变量,而函数y(x)是一个自变函数,因此,S是自变函数y(x)的函数:S=S【y(x)】。这种"函数的函数"在数学上叫泛函。所以,最小旋转面问题是一个泛函极值问题,这类问题就是变分学研究的内容。

变分原理

变分原理实际上就是以变分形式表述的物理定律,也就是说,在所有满足一定约束条件的可能物质运动状态中,真实的运动状态应使某物理量取极值或驻值。重要的变分原理举例如下:

① 费马原理 光线通过介质时,与一切可能路径相比,真实路径使传播时间最短。

② 哈密顿原理 在保守、完整的力学体系中,由初态过渡到终态的一切可能运动状态中,真实的运动状态使作用函数取驻值。这里,T和U分别为体系的动能和势能(见能),t0和t1为相应于初态和终态的时刻。

③ 最小势能原理 在弹性平衡问题中,与一切满足位移边界条件的可能位移相比,真实位移使弹性体的势能为极小值。

④ 最小余能原理 在弹性平衡问题中,与一切满足平衡微分方程与外力边界条件的可能应力相比,真实应力使弹性体的余能为极小值。

欧拉方程及其与变分问题的等价性  变分问题可以化成等价的微分方程问题。例如,在固定边界的条件下,使泛函取极值的函数满足下列微分方程:这个微分方程通常称为欧拉方程。

欧拉方程与变分问题是等价的。它是微分方程形式与变分形式物理定律等价性的数学描述,变分原理则赋予微分方程问题与变分问题等价性以丰富的具体内容。虽然物理问题可以有两种等价的提法,但在求近似解时,从求泛函的极值或驻值出发,有时比从微分方程出发更为方便。因此,变分方法日益受到重视,并成为计算力学的重要方法之一。

【什么是变分方法-图】百科知识点大家已经阅读过了,学大教育网将为大家介绍更多的百科知识,希望大家能记忆好这些内容。

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-102-8926 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956